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» The Physics behind silicon photomultipliers
» Geometry and principle of operation

* A SiPM for every need: from vacuum-ultra-violet to near-infrared, to
extreme environments

» SiPMs for astroparticle physics




The Nobel Prize in Physics 1921 was awarded to Albert
Einstein

a) «for his services to Theoretical Physics, and
especially for his discovery of the law of the
photoelectric effect»

b) «for his services to Theoretical Physics, and
especially for his theory of special relativity,
reconciling Newton’s laws of motion with
electromagnetism»

c) «for his services to Theoretical Physics, and
especially for his theory of gravitation*»

*a.k.a.: «general relativity»




the Nobel Prize in Physics 1921 was awarded to \
Albert Einstein "for his services to Theoretical

Physics, and especially for his discovery of the law of
the photoelectric effect."

Albert Einstein received his Nobel Prize one year later, in 1922. During the selection process in 1921, the
Nobel Committee for Physics decided that none of the year's nominations met the criteria as outlined in the
will of Alfred Nobel. According to the Nobel Foundation's statutes, the Nobel Prize can in such a case be
reserved until the following year, and this statute was then applied. Albert Einstein therefore received his

&bel Prize for 1921 one year later, in 1922. J

https://www.nobelprize.org/prizes/physics/1921/summary/




Photoelectric absorption

——————————————————

__________________

y (Ey = hv) E,-

/)
\
@

[Ee‘ = hv — ]

Photoelectric absorption is a threshold
process: F; is the minimum amount of energy a

photon must carry to extract the electron




Detectors that exploit the photoelectric effect:
Photomultiplier tubes
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Detectors that exploit the photoelectric effect:
Solid- state sensors

Photodiodes GM-APD
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Silicon photomultipliers (SiPMs): an array of GM-APDs
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SiPMs: array of reverse-biased Single Photon avalanche Diodes
(SPADs) connected in parallel, each with integrated quenching resistor

Cathode (K)

Rq Rqg Rq Rq
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tSPAD) J‘SPAD’ (SPAD’ (SPAD’

)

Anode (A)

http://advansid.com/resources/the-silicon-photmultiplier

SiPM size: from 1x1imm? to SPAD size: from 5um to
10X10mm? 4oum (typical)




SiPMs: 3D view
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Avalanche Metal Front contact APD Rq

region Ra Ry contact
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https://hub.hamamatsu.com/jp/en/technical-note/how-sipm-works/index.html




SiPMs I-V curves
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Forward and reverse I-V characteristics of a NUV 1x1imm? SiPM with goum cell at different
temperatures. (M. Capasso, «<Development of a NUV camera for Cherenkov telescopes

aﬁilications»)




A single-photon counter in action

——————————————————

11
Cathode (K)
Rqg Rqg Rq Rq
b e VBias
G\I-APD M-APD GM-APD GM-APD
1x1mm? 40um cell HV = 28V L = 380nm Anode (A)

S 350

E E —1 Cell

.‘_é 30— —2 Cells

£ F —3Cells

number of photons (in the linear regime)

[The output signal is proportional to the impinging }




SiPMs: Fill Factor
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S1PMs in a snapshot: why we like them
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Compactness, ruggedness, insensitivity to magnetic fields, wide sensitivity spectrum: a perfect mix
for scientific and industrial applications!!!

LIDAR (light detection and ranging)
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I
Kato et al. sooo pom  cart S
| ~200000 SiPMs

Rare-event experiments

Liquid Argon
emission, wavelength-
shifted (~400-450nm)

2 light readout planes:
~20 m?
: DS-20k

Re et al. Neurophoton. 3(4), 045004 (2016 20t




SiPMs at FBK: technological roadmap

https://www.fbk.eu/it/
green and UV response

High density cells with
deep trench isolation

Position
Sensitive

Position sensitive with xy
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applications detectionin VUV (~175nm) i very small cells , 800-1000nm PDE




INFN and FBK, a long, fruitful partnership
(a.k.a.: an undergraduate story)
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» 2012: F. Santoro “Studio di
fotorivelatori al silicio per
singolo foto-elettrone”.
Bachelor’s thesis at Universita
degli Studi di Bari -
Dipartimento Interateneo di

Development of & NUY camers Fisica Michelangelo Merlin.

for Cherenkov telescopes applications e 2 013_2 01 4: M CapaSSO fiI‘St
internship at FBK and Master’s
thesis on SiPM for Cherenkov
e telescopes applications

Anno Accademico 2013-2014




Some SiPM recent developments

SiPMs for «extreme» environments: cryogenic
applications

SiPMs for short (VUV) or long (NIR) wavelengths




NUV-HD go “cool”: cryogenic challenges
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NUV-HD LowField+LowAP: NUV-HD-Cryo
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Vacuum ultra-violet detection with SiPMs
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In some specific applications direct detection of VUV light is required > NUV-HD
technologies have 2 main limiting factors

@
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https://doi.org/10.1016/j.nima.2019.05.096

Near-infrared detection with SiPMs: technical challenges
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Future challenges
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* Go denser: some applications might require higher pixel density for
higher dynamic range
o Push pixel design to the limit in order to keep satisfactory fill-factor

* Go harder: required in high-energy-physics experiments and space
applications

» Go longer: better performance in the NIR of interest for e.g.: LIDAR
applications




S1PMs for Cherenkov astronomy

The Schwarzschild-Couder Telescope at the Fred
Lawrence Whipple Observatory (Arizona)




The Schwarzschild-Couder Telescope (SCT)
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Photo: M. Capasso




The CTA SCT Project
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» ~30 Institutions https://cta-psct.physics.ucla.edu/institutions.html

» Milestones:

15t construction: 06-23-2015

Inauguration: 01-17-2019

15t light: 01-23-2019

December 2019: optical alignment achieving pre-construction estimated PSF

May 2020: significant detection of the Crab Nebula (presented at 236%™ AAS) — published paper

Endorsement by the CTA Consortium for supporting the development and construction of SCTs to
add to the array and complement single-mirror MST's

» Next steps:

o Ongoing (funded MRI): population of the focal plane to ~11k channels with upgraded SiPMs and
electronics

O O O O O O



https://cta-psct.physics.ucla.edu/institutions.html

The SCT SiPM camera
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Preamplifier+ FEE upgrade

——————————————————

__________________

» Testing Setup:
o Full chain from SiPMs to FEE assembled

o Laser source + moving stage to illuminate one pixel
at a time




Full-chain testing : current vs. upgrade
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Summary and conclusions
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» SiPMs are nowadays a mature technology that can replace PMTs in a
wide variety of applications requiring single-photon sensitivity
o There is a SiPM for every need and every spectral response from VUV to NIR

» SiPMs in ground-based Cherenkov astronomy: the SCT
o A milestone pathfinder for dual-mirror telescope technology + solid-state sensors

o New SiPMs, new electronics and a fully-populated focal plane to come! (The upgrade
1s ongoing)

STAY TUNED!!!




