What water tanks in Mexico can tell us about powerful particle accelerators in the universe Henri

Disclaimer: The material contained in this document is based upon work supported by a National Aeronautics and Space Administration (NASA) grant or cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

The material is based upon work supported by NASA under award number 80GSFC21M0002.

Henrike Fleischhack CUA/NASA GSFC/CRESST II June 22nd 2021

Hess & Kolhörster 1912

FAWC Cosmic Rays and their Sources

Image: http://w3.iihe.ac.be/~aguilar/PHYS-467/PA3.html

Cosmic-rays

Gamma-rays

Energies up to $3 \cdot 10^{20} \text{ eV}!$ $(\sim 50 \text{ Joules})$ 3

Particle Accelerators

Terrestrial accelerators:

- LHC: protons ~ $7*10^{12}$ eV
- TeVatron: protons ~ 10^{12} eV
- Decades of planning.
- Thousands of engineers and scientists.
- Active for a few decades.

Cosmic accelerators:

- Galactic: protons ~10¹⁵ eV
- Extragalactic: protons ~ 10²⁰ eV
- No engineers and scientists involved.
- Can be active for seconds to millions of years.

10⁹: **G**iga

Observing Cosmic Ray Accelerators

Cosmic rays are deflected by magnetic fields. Neutral "particles" point back to their sources:

- Photons (gamma rays)
- Neutrinos
- (Gravitational waves)

Not all cosmic ray accelerators emit all of these messengers!

https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/

Dust, gas, photon fields

Cosmic accelerator

Gamma-ray photons

Air showers (e+e- cascade)

Cherenkov photons

Electrical signal

Cosmic Rays and Gamma Rays

Dust, gas, photon fields

Dust, gas,

Dust, gas, photon fields

Dust, gas, photon fields

Dust, gas, photon fields

Cosmic

Cosmic

Dust, gas, photon fields

Cosmic

Dust, gas,

Cosmic

Dust, gas, photon fields

Cosmic accelerator

Time over threshold

DAQ electronics

High Altitude Water Cherenkov Observatory

4100 m elevation

Energy range: ~300 GeV — 100 TeV Angular resolution: ~0.1° Field of View: ~2 sr >95% Uptime

10⁹: **G**iga

Main array completed March 2015 **Outriggers deployed 2018**

100,000 m²

$1,000 \text{ m}^2$

Cosmic accelerator

Time over threshold

Gamma-ray photons

Air showers (e+e- cascade)

Cherenkov light

Electrical signal

Dust, gas,

Cosmic

Dust, gas, photon fields

Cosmic accelerator

DAQ electronics

Dust, gas,

Cosmic

Dust, gas,

Cosmic

Dust, gas,

Cosmic

(High-level) analysis and modeling

electronics

Cosmic

Dust, gas,

analysis and modeling

Cosmic

accelerator

Gamma-Ray Astronomy with HAWC

Dust, gas, photon fields

> (High-level) analysis and modeling

> > Calibratio

Combination of astrophysics, particle physics, electronics, data science, ...

Time over threshold

> DAQ electronics

Incident Direction (Time Gradient)

Event Reconstruction

Core Location (Light level)

Gamma-ray event

Cosmic-ray event

Gamma/Hadron Separation

Axial symmetry

Asymmetric, high charge hits far from core

HAWC's Gamma-Ray Sky All-sky view; 0.0°; 1523 days

HAWC's Gamma-Ray Sky All-sky view; 0.0°; 1523 days

Markarian 421

Geminga Halo

Crab Nebula

Declination range -20° to 60° ~60 sources

HAWC's Gamma-Ray Sky All-sky view; 0.0°; 1523 days

Markarian 421

Geminga Halo

Crab Nebula

Declination range -20° to 60° ~60 sources

The Cygnus Region

Cygnus OB2 Association

- OB association in the Cygnus region.
- 1400 pc from Earth.
- Few 10⁶ years old.
- 50-100 O-type stars.
- ~50 binary systems.

Particle Acceleration in Star-Forming Regions

Possible acceleration mechanisms:

- Proto-planetary disks and their jets.
- **Collective effects of stellar winds.**
- High-mass binary systems.
- Supernova explosions/supernova remnants.
- Significant sources of Galactic CRs?
- Could they accelerate CRs up to the knee (PeV energies)?

Dust, gas,

Cosmic

(High-level) analysis and modeling

(High-level) modeling

- Extended (50 pc) diffuse HE gamma-ray source • (Ackermann et al., 2011, Science 334).
- 'Cocoon' of freshly accelerated CRs.
- Modeled as symmetric Gaussian source with power-law energy spectrum.

'Cygnus Cocoon'

'TeV J2031+4130'

- Extended VHE gamma-ray source [E. Aliu et al. ApJ 783 (2014), R. Bird et at, ICRC 2017].
- Associated with PWN of PSR J2032+413
- Long-period binary system:
 - Period of 50 years (Ng et al, 2017).
 - Periastron in November 2017 [ICRC 2019/<u>https://arxiv.org/abs/1908.04165</u>].
- Modeled as Gaussian source, power-law energy spectrum with exponential cutoff.

HAWC not sensitive to periastron enhancement

- Extended (0.1°) VHE gamma-ray source [E. Aliu et al., ApJ 770 (2013) 93].
- Additional extended (0.6°) disk component lacksquare(Strysz et al., ICRC 2017).
- SNR G78.2+2.1 of PSR J2021+4026
- HAWC sees the extended disk detected by MAGIC. \bullet
- Modeled as disk, power-law energy spectrum. \bullet

'Gamma Cygni SNR'

Combined Model

• Combined model describes region reasonably well.

Cocoon Morphology

- Map on the left has PWN and gamma Cygni subtracted.
- Blue contours are Fermi-LAT counts.
- HAWC Morphology matches what was seen at GeV energies.

Two hadronic models can explain gamma-ray emission:

- Continuous proton acceleration over a long time
- "Recent" enhancement in acceleration efficiency due to starburst activity.

Protons with energies of >100 TeV must be present to produce the observed gamma-ray emission.

About 1% of the kinetic energy in stellar winds is converted to relativistic protons.

а 10^{-9} 10⁻¹⁰ s¹ cm⁻² 10⁻¹¹

10⁻¹²

(TeV

Φ

Energy Spectrum

data.hawc-observatory.org

- High-level data:
 - 3HWC survey maps
 - Mrk 421/Mrk 501 light curves
- Intermediate-level data (count maps)
- Contact the spokespeople:
 - Petra Huentemeyer (<u>petra@mtu.edu</u>)
 - Andres Sandoval (<u>asandoval@fisica.unam.mx</u>) lacksquare
- Self-triggered burst alerts in GCN/AMON

HAWC Data Access

E19

Rotoplas

What's next? In ground-based gamma-ray astronomy? For me?

Z

What's next?

E19

Rotoplas

What's next? In ground-based gamma-ray astronomy? For me?

E19

Rotoplas

What's next? In ground-based gamma-ray astronomy? For me?

The X-ray sky (~keV)

SRG/eROSITA

The y-ray sky >1 GeV

NASA GSFC/Fermi-LAT collaboration

https://svs.gsfc.nasa.gov/vis/a010000/a011300/a011342/

The y-ray sky (1-30 MeV)

Cyg X-1

COMPTEL team/MPE, 2006

MeV y-ray Detection

 $\begin{aligned} \sigma_{\text{p.e.}} &= \text{Atomic photoelectric effect (electron ejection, photon absorption)} \\ \sigma_{\text{Rayleigh}} &= \text{Rayleigh (coherent) scattering-atom neither ionized nor excited} \\ \sigma_{\text{Compton}} &= \text{Incoherent scattering (Compton scattering off an electron)} \\ \kappa_{\text{nuc}} &= \text{Pair production, nuclear field} \\ \kappa_{e} &= \text{Pair production, electron field} \end{aligned}$

AMEGO-X: Our Eyes on the Gamma-Ray Sky

- MIDEX-sized mission concept.
- Silicon "pixel" tracker and Csl scintillator calorimeter.
- Energy range: 100 keV to 1 GeV.
- Multi-messenger astronomy.

Compact Object Binaries

Pulsar Wind Nebulae

Galactic Diffuse Emission

Gamma-ray Bursts

Active Galactic Nuclei

> Gravitational Wave Counterparts

Neutrino Counterparts

Dark Matter

Supernova Remnants

AMEGO-X: Our Eyes on the Gamma-Ray Sky

- MIDEX-sized mission concept.
- Silicon "pixel" tracker and Csl scintillator calorimeter.
- Energy range: 100 keV to 1 GeV.
- Multi-messenger astronomy.

Multi-Messenger Astronomy with AMEGO-X

Gamma-ray flares and neutrinos from active galaxies

Gamma-ray bursts and gravitational waves from binary neutron star mergers

Image: M. Negro

