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Ionizing radiation rate 
increases with altitude

https://commons.wikimedia.org/wiki/File:HessKol.jpg



Gamma-rays

Cosmic-raysCosmic Rays and their Sources

3 (~50 Joules)
Energies up to 3・1020 eV!

Image: http://w3.iihe.ac.be/~aguilar/PHYS-467/PA3.html

“knee”

“Ankle”



Cosmic accelerators: 
• Galactic: protons ~1015 eV 
• Extragalactic: protons ~ 1020 eV 
• No engineers and scientists involved. 
• Can be active for seconds to millions 

of years.

Particle Accelerators
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Terrestrial accelerators: 
• LHC: protons ~ 7*1012 eV 
• TeVatron: protons ~ 1012 eV 
• Decades of planning. 
• Thousands of engineers and scientists. 
• Active for a few decades.

Red: Hubble Space Telescope 
Blue: Chandra X-ray Observatory

9 km

1014 km
1015 km

106: Mega 
109: Giga 
1012: Tera 
1015: Peta



Observing Cosmic Ray Accelerators
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Cosmic rays are deflected by magnetic fields. 

Neutral "particles" point back to their sources: 

• Photons (gamma rays) 

• Neutrinos 

• (Gravitational waves) 

Not all cosmic ray accelerators emit all of these 
messengers!

https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/ 

https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/
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Cosmic Rays and Gamma Rays

7Image: R. Lopez-Coto 
https://doi.org/10.1007/978-3-319-44751-3
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Extensive Air Showers

9 https://doi.org/10.1016/j.ppnp.2017.10.002

• mainly electrons and photons 
• tend to develop evenly.

• protons, pions, muons, 
and neutrinos 

• substructure

shower plane
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High Altitude Water Cherenkov Observatory
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4100 m elevation

Main array completed March 2015 
Outriggers deployed 2018 

22,000 m2

Energy range: ~300 GeV — 100 TeV 
Angular resolution: ~0.1° 
Field of View: ~2 sr 
>95% Uptime

100,000 m2

T-rex for scale

106: Mega 
109: Giga 
1012: Tera 
1015: Peta
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Event Reconstruction
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Incident Direction 
(Time Gradient)

Core Location 
(Light level)
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Gamma-ray event

Cosmic-ray event

Gamma/Hadron Separation

Axial symmetry

Asymmetric, high 
charge hits far 

from core
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HAWC’s Gamma-Ray Sky

Declination range -20° to 60° 
~60 sources

3HWC catalog, https://arxiv.org/abs/2007.08582 

https://arxiv.org/abs/2007.08582
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The Cygnus Region

https://www.nature.com/articles/s41550-021-01318-y 

https://www.nature.com/articles/s41550-021-01318-y
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The Cygnus Region

https://www.nature.com/articles/s41550-021-01318-y 

https://www.nature.com/articles/s41550-021-01318-y
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Cygnus OB2 Association

• OB association in the Cygnus 
region. 

• 1400 pc from Earth. 

• Few 106 years old. 

• 50-100 O-type stars. 

• ~50 binary systems.

        Kobulnicky, H. et al. Astrophys.J.Suppl. 213 (2014) no.2, 34
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Particle Acceleration in Star-Forming Regions

Possible acceleration mechanisms: 

• Proto-planetary disks and their jets. 

• Collective effects of stellar winds. 

• High-mass binary systems. 

• Supernova explosions/supernova remnants. 

Significant sources of Galactic CRs? 

Could they accelerate CRs up to the knee (PeV 

energies)?
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'Cygnus Cocoon'

• Extended (50 pc) diffuse HE gamma-ray source 
(Ackermann et al., 2011, Science 334). 

• 'Cocoon' of freshly accelerated CRs. 

• Modeled as symmetric Gaussian source with 
power-law energy spectrum.



• Extended VHE gamma-ray source [E. Aliu et al. ApJ 783 (2014), R. Bird et at, ICRC 2017]. 

• Associated with PWN of PSR J2032+413 

• Long-period binary system: 

• Period of 50 years (Ng et al, 2017). 

• Periastron in November 2017  
[ICRC 2019/https://arxiv.org/abs/1908.04165]. 

• Modeled as Gaussian source, power-law energy  
spectrum with exponential cutoff.
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'TeV J2031+4130'

HAWC Preliminary

HAWC not  
sensitive 

to periastron  
enhancement 

https://arxiv.org/abs/1908.04165


• Extended (0.1˚) VHE gamma-ray source [E. Aliu et al., ApJ 770 (2013) 93]. 

• Additional extended (0.6˚) disk component 
 (Strysz et al., ICRC 2017). 

• SNR G78.2+2.1 of PSR J2021+4026 

• HAWC sees the extended disk detected by MAGIC. 

• Modeled as disk, power-law energy spectrum. 
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'Gamma Cygni SNR'

HAWC Preliminary
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Combined Model

- =
 ModelHAWC Preliminary Residuals

• Combined model describes region reasonably well.

Data
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Cocoon Morphology

• Map on the left has PWN and gamma 
Cygni subtracted. 

• Blue contours are Fermi-LAT counts. 

• HAWC Morphology matches what 
was seen at GeV energies.
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Energy Spectrum

Two hadronic models can explain 
gamma-ray emission: 
• Continuous proton acceleration 

over a long time 
• "Recent" enhancement in 

acceleration efficiency due to 
starburst activity. 

Protons with energies of >100 TeV 
must be present to produce the 
observed gamma-ray emission.  

About 1% of the kinetic energy in 
stellar winds is converted to 
relativistic protons. 
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HAWC Data Access

pick 
coordinates

pick 
morphology

significance 
map

flux 
values/
limits

data.hawc-observatory.org 

• High-level data: 

• 3HWC survey maps 

• Mrk 421/Mrk 501 light curves 

• Intermediate-level data (count maps) 

• Contact the spokespeople: 

• Petra Huentemeyer (petra@mtu.edu) 

• Andres Sandoval (asandoval@fisica.unam.mx) 

• Self-triggered burst alerts in GCN/AMON

3HWC3HWC

http://data.hawc-observatory.org
mailto:petra@mtu.edu
mailto:asandoval@fisica.unam.mx
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What's next?
• In ground-based gamma-ray astronomy? 
• For me?



29

What's next?
• In ground-based gamma-ray astronomy? 
• For me?



29

What's next?
• In ground-based gamma-ray astronomy? 
• For me?



29

What's next?
• In ground-based gamma-ray astronomy? 
• For me?



30

The X-ray sky (~keV)

https://www.mpe.mpg.de/7461950/erass1-presskit 

https://www.mpe.mpg.de/7461950/erass1-presskit


The ɣ-ray sky >1GeV
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https://svs.gsfc.nasa.gov/vis/a010000/a011300/a011342/ NASA GSFC/Fermi-LAT collaboration

https://svs.gsfc.nasa.gov/vis/a010000/a011300/a011342/
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https://svs.gsfc.nasa.gov/vis/a010000/a011300/a011342/NASA GSFC/Fermi-LAT collaboration

The ɣ-ray sky (1-30 MeV)

https://science.nasa.gov/science-news/science-at-nasa/compton_ast COMPTEL team/MPE, 2006

https://science.nasa.gov/science-news/science-at-nasa/compton_ast


MeV ɣ-ray Detection

33

θ

γ

γ'e

E1

E2

Event circle
Event arc

“Tracker”

“Calorimeter”

γ

e+e-

E1 E2

Compton event Pair  event

cos (θ) = 1 −
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Compton scattering angle:

Particle data group, https://pdg.lbl.gov/



The AMEGO-X Instrument
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Charged particle detector (veto)

Tracker

Calorimeter

Spacecraft

Pair interaction Compton interaction
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AMEGO-X: Our Eyes on the Gamma-Ray Sky 

• MIDEX-sized mission concept. 

• Silicon “pixel” tracker and CsI scintillator 
calorimeter. 

• Energy range: 100 keV to 1 GeV. 

• Multi-messenger astronomy.

106: Mega 
109: Giga 
1012: Tera 
1015: Peta
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Multi-Messenger Astronomy with AMEGO-X

Gamma-ray flares 
and neutrinos from 
active galaxies 

Gamma-ray bursts and 
gravitational waves 
from binary neutron 
star mergers

Image: M. Negro


