Reina Maruyama 丸山玲奈

Associate Professor of Physics & Astronomy Yale University she/her/hers Barnard College Summer Astroparticle Colloquium Series

Research in Maruyama Group

http://maruyama-lab.yale.edu

Research Physics Beyond the Standard Model of Particle Physics Neutrinos and Dark Matter Ice CUORE NE-100 M-ICE

- direct detection dark matter experiment at Yale, South Pole and South Korea.
- Is DAMA really seeing dark matter?

- Neutrinoless double beta decay
- Are neutrinos their own anti-particles? Are they Majorana particles?

WISCONSIN ICECUBE PARTICLE ASTROPHYSICS CENTER

Office of Science

incomplete The Standard Model of Elementary Particles

+ their anti-particle partners

http://particleadventure.org/

Matter-antimatter asymmetry?

History of Neutrinos

The Nobel Prize in Physics 2015

"for the discovery of neutrino oscillation, which shows that neutrinos have mass"

Takaaki Kajita Super-K Collaboration University of Tokyo, Japan

Arthur B. McDonald SNO Collaboration Queen's University, Canada

Open Questions in 2019

- Sterile neutrinos?
- other effects

Vs

Absolute Neutrino Mass Scale

Two-neutrino double beta decay ($2\nu\beta\beta$)

Proposed in 1935 by Maria Goeppert Mayer

($2\nu\beta\beta$) T_{1/2} ~ $10^{19} - 10^{21}$ yrs

First direct observation by Moe, Elliott, and Hahn in ¹⁰⁰Mo (1988)

- Completely allowed process
- No new physics beyond the Standard Model of Particle Physics

for example...

Maria Goeppert Mayer (1906 - 1972)

Parity Violation in Beta Decay: Chien-Shiung Wu 1912 - 1997 吳健雄

Parity violation in Weak Interaction

• Proposed by Lee & Yang in 1956

• Experimentally demonstrated by Wu, 1957

Reina Maruyama

http://www.columbia.edu/cu/record/archives/vol22/vol22_iss15/record2215.16.html11

1957

Parity Violation in Weak Interactions

C.S. Wu et al., Phys.Rev., 105.1413 (1957)

https://physics.aps.org/story/v22/st19

Reina Maruyama

Zero-Neutrino Double Beta Decay (0vββ)

- Why is it interesting? Observation of 0vbb would mean...
 - Neutrinos must be Majorana particles (not Dirac)
 - New mass scale in nature
 - potential for absolute neutrino mass scale & hierarchy
 - explicitly violate lepton number
 - Key ingredient for standard baryogengesis via leptogenesis

Double Beta Decay Spectrum

How Rare?

- Most measured half-lives for $2\nu\beta\beta$ are O(10²¹) years (The longest directly observed process)
 - Compare to lifetime of the universe: 10¹⁰ years
 - Compare to Avogadro's number: 6 × 10²³
 - A mole of the isotope will produce ~1 decay/day
- If it exists, the half-lives of $0\nu\beta\beta$ would be much longer
 - ¹³⁰Te $0\nu\beta\beta$ limit is > 10^{24} years*
 - A mole of ¹³⁰Te produces < 1 neutrinoless decay/year
 - A half-life of 10²⁶ years requires 32 kg of ¹³⁰Te to see 1 decay/year

Amedeo avagado

Slide from J. Cushman

0vββ Decay rate

0vββ Decay rate

 $(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$ $T_{1/2}^{0\nu} = 0\nu\beta\beta \text{ half-life}$ $G^{0\nu}(Q,Z) = \text{phase space factor } (\propto Q^5)$ $M^{0\nu} = \text{nuclear matrix element}$ $\langle m_{\beta\beta} \rangle = \text{effective } \beta\beta \text{ neutrino mass}$ $m_e = \text{electron mass}$

For light neutrino exchange

All 3 neutrinos will contribute: $\eta \sim m \rightarrow \langle m_{\scriptscriptstyleetaeta}
angle = \sum_i U_{\scriptscriptstyle ie}^2 m_i$

mpp ~ 1 eV
$$\implies$$
 T_{1/2} ~ 10²⁴ years
mpp ~ 0.1 eV \implies T_{1/2} ~ 10²⁶ years
mpp ~ 0.01 eV \implies T_{1/2} ~ 10²⁸ years

Neutrinoless Double Beta Decay Experiments

Double Beta Decay Spectrum

Choose a Signal:

or

CANDLES

A diagram that the direct dark matter experiments like to make.

Bolometer+Cherenkov Phonon Scintillating Bolometer: CUORE-Next Family (LUCIFER, LUMINEAU) AmoRE Ionization Light **TPC: nEXO and NEXT** Liquid Scintillator: KamLAND-Zen, SNO+ Scintillating Crystal:

CUORE

Semiconductor: GERDA/Majorana Tracking: SuperNEMO, DCBA

L. Winslow

CUORE Bolometer

CUORE

Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals run as a bolometer array
 - 5x5x5 cm³ crystal, 750 g each
 - 19 Towers; 13 floors; 4 modules per floor
 - ► 742 kg total; 206 kg ¹³⁰Te
 - ► 10²⁷ ¹³⁰Te nuclei

- New pulse tube dilution refrigerator and cryostat
- Radio-pure material and clean assembly to achieve low background in region of interest (ROI)

Gran Sasso National Lab, Italy

1.4-km avg. rock overburden = 3100 m.w.e. flat overburden

factor 10⁶ reduction in muon flux to ~ $3 \times 10^{-8} \mu/(s \text{ cm}^2)$

CUORE Experiment

Low Background Experime

- Passive lead, polyethylene, and H₃BO₃ shielding
- 70 tonne of lead, 7 tonne of cold lead
- Material selection: Ancient Lead and low radioactive copper
- Active background veto

CUORE fabrication & cryostat commissioning

R. Maruyama

What's Next? CUPID

Measure heat and light from energy deposition

Heat is particle independent, but light yield depends on particle type

Actively discriminate α using measured light yield

CUPID Detector

Single module: Li₂¹⁰⁰MoO4, 45x45x45 mm, 280 g

Detector: 57 towers of 14 floors with 2

crystals each, 1596 crystals

~240 kg of ¹⁰⁰Mo with >95% enrichment

~1.6.10^{27 100}Mo atoms

Ge light detector as in CUPID-Mo, CUPID-0

Detector Module

CUPID Collaboration

International collaboration CNrs builds on Italian-US partnership

Countries	Aut
Italy	64
USĂ	42
France	25
China	10
Ukraine	5
Russia	4
Spain	1

Alrfu

BICOCCA

œ

Yale

G

S

S

UNIVERSITÉ

DE LYON