

Exploring the Extreme Universe with Gamma-ray Observatories

Reshmi Mukherjee¹ ¹Barnard College, Columbia University, NY

Summer 2020 Colloquium, Series, 16 June 2020

Outline

- Motivation and broad science goals
 - Cosmic ray and astrophysical accelerators
- Techniques in high energy gamma-ray astronomy
 - satellite, ground-based
- Science highlights
 - Open questions in Particle Astrophysics
 - What are the most energetic events in the universe?

Future – new telescopes

Hz 10 ²² 10 ²³ 10 ²⁴ 10 ²⁵ 10 ²⁸ 10 ²⁷ 10 ²⁸	
eV 107 10 ⁸ 10 ⁹ 10 ¹⁰ 10 ¹¹ 10 ¹² 10 ¹³ 10 ¹	4
High Energy Gamma-rays Very High	Energy Gamma-rays

Some Basics & Terminologies ...

The electron Volt (eV) unit of energy

• Unit of energy: eV (electron Volt) = 1.6×10^{-19} Joules

200 MeV: the average energy released in nuclear fission of one U-235 atom 1 TeV: a trillion eV = 1 million MeV

Photon: "packet" of light (c = speed of light 300,000,000 meters/second)

Why Gamma-Ray Astronomy?

- Provides crucial window in the cosmic E-M spectrum
- Exploration of non-thermal phenomena in the Universe of the most energetic and violent forms
- The "last window" in the cosmic EM spectrum covers 8+ decades

- LE or MeV : 0.1 -100 MeV
- HE or GeV : 0.1 -100 GeV
- VHE or TeV : 0.1 -100 TeV

domain of space-based astronomy

domain of ground-based astronomy

Potential & Uniqueness

- Unique for specific topics
 - e.g. for the solution of the origin of Galactic and Extragalactic Cosmic Rays
- May provide <u>key insight</u> into a number of astrophysics questions
 - physics and astrophysics of relativistic outflows (jets and winds)
 - HE processes at extreme conditions (e.g. close to Black Holes)
 - Physics and astrophysics of Supermassive Black Holes
- Using <u>γ rays to probe intergalactic space</u>
 - Diffuse radiation fields.
- Contribution to <u>fundamental physics topics</u>
 - violation of Lorentz invariance
 - search for Dark Matter

Cosmic Rays

 More than 200 years ago, in 1785 Charles de Coulomb in France showed that charged metallic bodies lose charge when placed in air.

Gold-leaf electroscope, *Elementary Lessons in Electricity & Magnetism*, Thompson (1881)

Origin of Cosmic Rays remains a mystery

• Cosmic rays, first discovered by Victor Hess on a 17,000 ft balloon flight in 1912, while investigating the source of background radiation.

Cosmic Ray Energy Spectrum

What is the origin of the highest energy cosmic rays?

The magnetic field in our galaxy is approximately 3G, radius ~ 15 kpc
Protons with E < 10¹⁸ eV are trapped in our galaxy by the magnetic field

How do you get 10²⁰ eV energy? Particle acceleration in the cosmos...

Explosions in Space

- Energy is created from mass when stars explode
- Supernovae herald the deaths of stars
- Gamma-ray Bursts signal the deaths of even more massive stars
- Active galaxies

Mass & Energy

 $E = mc^2$

Mass and energy

- Einstein's most famous equation
- Einstein realized that mass and energy were equivalent and interchangeable
- This interchange is commonly observed in high-energy astronomy

Creating Energy from Mass

 When two oppositely charged particles meet in flight, they can annihilate to create two gamma-ray photons traveling in opposite directions

- The rest mass of an electron or its anti-particle, the positron, is 511 keV/c²
- Annihilating of particles creates energy of E= 1.012 MeV

Gamma Ray Burst

$E = mc^2$

1 raisin * c² = nuclear explosion energy

400,000 Earths * $c^2 = GRB$ Energy

Particle Acceleration

- Shock fronts and magnetic fields can accelerate protons to CR energies over time
- Particle's perspective: crossing the shock
 => head-on collision with magnetic domains

Supernova Explosion

Is this a record of the supernova explosion in 1054 AD by the mysterious Anasazi people of Chaco Canyon, New Mexico?

The supernova would have been 5 times brighter than Venus in the night sky.

The Crab Pulsar – a rapidly rotating Neutron Star

Electric potential differences of quadrillions of volts. Such voltages, which are 30 million times greater than those of lightning bolts, create deadly blizzards of high-energy particles.

Neutron Star ??

Neutron Star Power

The Neutron Star-class bulk cruiser was a class of capital ship used by the Galactic Empire and Rebel Alliance. They were designed during the Clone Wars to serve as second-line ships.

Physics of Compact Objects: AGN

AGN scales

- Active galactic nuclei occupy a tiny fraction of a galaxy.
- $R_G \sim 10^4 \text{ pc}$
- $R_{tor} \sim 1 \text{ pc}$
- $R_{BH} \sim 10^{-5} \text{ pc}$

Hubble image of NGC 5548

Extragalactic Sources of Energy

Extragalactic Relativistic Jets in Active Galaxies

Key quesions: acceleration,

of observed jets.

collimation and stability/propagation

As opposed to "normal" galaxies ...

 The Milky Way galaxy is a barred spiral galaxy 100,000–120,000
 light-years in diameter containing 200–400 billion stars.

 An active galaxy ~ thousands of Milky Way galaxies.

A view of the Milky Way towards the Constellation Sagittarius (including the Galactic Center) as seen from a non-light polluted area (the Black Rock Desert, Nevada).

Active Galaxies are Powered by Super-Massive Black Holes

In the heart of an active galaxy, matter falling toward a supermassive black hole creates jets of particles traveling near the speed of light. For active galaxies classified as blazars, one of these jets beams almost directly toward Earth.

Gamma-Ray Production

In astrophysics, non-thermal processes lead to power-law spectra (Longair 1992)

- electrons
 - synchrotron radiation (X-rays)
 - inverse Compton scattering

- protons
 - collide with ambient gas (beam dumps)
 - $\begin{array}{ll} \pi^0 \dashrightarrow \gamma \gamma & p + p \to \pi^{\pm,0} \to v, e^{\pm}, \gamma \\ p + \gamma \to p + \pi^0, & \pi^0 \to 2\gamma, \\ p + \gamma \to n + \pi^+, & \pi^{\pm} \to \mu^{\pm} + \nu_{\mu} \\ & \to e^{\pm} + 2\nu_{\mu} + \nu_{e}. \end{array}$

Origin of Cosmic Rays?

Cosmic rays:

- Origin of CRs cannot be addressed by observations of charged CRs
- In order to identify CR accelerators, need to observe neutral stable messengers: γ rays and neutrinos

Superluminal Motion Blazar

- Relativistic jet in 3C 279 at 22 GHz.
- 1991 1997 (18 epochs)
- Bright, compact VLBI core and jet components.
- Apparent speeds: 4.8 to 7.5 times the speed of light!

Blazar Characteristics

Doppler boosting: Relate observed (*) and intrinsic physical quantities (e.g. Rybicki & Lightman, 1979)

$$L_{app}^* = \delta^n L, \ 3 \le n \le 4$$
$$\delta = [\Gamma(1 - \beta \cos \theta^*]^{-1}$$
$$\beta = V_{jet}/c$$
$$\Gamma = (1 - \beta^2)^{-1/2}$$

For blazars, $\theta \sim 1/\Gamma$, $\delta \sim 1/2\Gamma$

Reshmi Mukherjee

About the VLBI

Incidentally ...

VLBI was used to create the first image of a black hole, imaged by the Event Horizon Telescope and published in April 2019.

Image of Messier 87: First direct visual evidence of the supermassive black hole in the center of Messier 87 and its shadow.

Image courtesy of NRAO/AUI

The instruments at VHE energies

NASA's Fermi Gamma Ray Space Telescope

\$>100 M US

To explore the ultimate limits of gravity and energy in the Universe ranging from the closest stars to the most distant quasars.