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1. INTRODUCTION
The observation that cosmic rays can exceed 1020 eV poses some interesting and challenging ques-
tions: Where do they come from? How can they be accelerated to such high energies? What kind of
particles are they? What is the spatial distribution of their sources? What do they tell us about these
extreme cosmic accelerators? How strong are the magnetic fields that they traverse on their way to
Earth? How do they interact with the cosmic background radiation? What secondary particles are
produced from these interactions? What can we learn about particle interactions at these otherwise
inaccessible energies? Here, we review recent progress toward answering these questions.

The dominant component of cosmic rays observed on Earth originates in the Galaxy. As shown
in Figure 1, the study of this striking nonthermal spectrum requires a large number of instruments
to cover over 8 orders of magnitude in energy and 24 orders of magnitude in flux. Galactic cosmic
rays are likely to originate in supernova remnants (see, e.g., Hillas 2006, for a recent update on
the origin of Galactic cosmic rays). A transition from Galactic to extragalactic cosmic rays should
occur somewhere between 1 PeV (≡ 1015 eV) and 1 EeV (≡ 1018 eV). Progress on determining this
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Figure 1
All particle cosmic ray flux multiplied by E2 observed by ATIC (Advanced Thin Ionization Calorimeter; Ahn
et al. 2008), Proton (Grigorov et al. 1971), RUNJOB (Russian Nippon Joint Balloon experiment;
Apanasenko et al. 2001), Tibet AS-γ (Tibet Air-Shower Gamma Experiment, Amenomori et al. 2008),
KASCADE (Karlsruhe Shower Core and Array Detector; Kampert et al. 2004), KASCADE-Grande
(Karlsruhe Shower Core and Array Detector-Grande; Apel et al. 2009), HiRes I (High Resolution Fly’s Eye
I; Abbasi et al. 2009), HiRes II (High Resolution Fly’s Eye II, Abbasi et al. 2008b), and Auger (the Pierre
Auger Observatory; Abraham et al. 2010b). Large Hadron Collider (LHC) energy reach of p − p collisions
(in the frame of a proton) is indicated for comparison.
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All particle cosmic ray flux multiplied by E2 observed by ATIC (Advanced Thin Ionization Calorimeter; Ahn
et al. 2008), Proton (Grigorov et al. 1971), RUNJOB (Russian Nippon Joint Balloon experiment;
Apanasenko et al. 2001), Tibet AS-γ (Tibet Air-Shower Gamma Experiment, Amenomori et al. 2008),
KASCADE (Karlsruhe Shower Core and Array Detector; Kampert et al. 2004), KASCADE-Grande
(Karlsruhe Shower Core and Array Detector-Grande; Apel et al. 2009), HiRes I (High Resolution Fly’s Eye
I; Abbasi et al. 2009), HiRes II (High Resolution Fly’s Eye II, Abbasi et al. 2008b), and Auger (the Pierre
Auger Observatory; Abraham et al. 2010b). Large Hadron Collider (LHC) energy reach of p − p collisions
(in the frame of a proton) is indicated for comparison.
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Precision measurement of the positron 
fraction in CRs. 

Signature of dark matter?

Direct detection

Super TIGER

Direct detection can also be accomplished 
with high-altitude balloons
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We need a BIG 
detector 
Hundreds or thousands of square miles in size
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Energetic particles make the 
air fluoresce in the UV
Can be detected by telescopes 
on moonless nights

Some particles reach the ground.
Recorded by particle detector on the 
surface.

Indirect detection
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Pierre Auger Observatory 
Argentina (3000 km2)
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https://www.auger.org/

 

https://www.auger.org/
https://labdpr.cab.cnea.gov.ar/ED/index.php?map=1
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Pierre Auger Observatory 
Argentina (3000 km2)
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https://www.auger.org/

 

Compare Auger to your city
https://labdpr.cab.cnea.gov.ar/ED/index.php?map=1

https://www.auger.org/
https://labdpr.cab.cnea.gov.ar/ED/index.php?map=1
https://labdpr.cab.cnea.gov.ar/ED/index.php?map=1
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Cosmic rays up to ~ 100 TeV can be 
detected directly from space or from 
balloons.  

Higher energies require gigantic 
detectors, thousands of sq. miles in size. 
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