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Neutrinos, they are very small
They have no charge and have no mass 
And do not interact at all

John Updike, “Cosmic Gall,” 1960



Outline

• Neutrinos within the context of the Standard Model
• Experimental signatures of neutrino oscillation

• Historically significant experiments
– Ray Davis’ solar neutrino experiment
– Kamiokande/Super-Kamiokande atmospheric neutrino 

experiments
– SNO solar neutrino experiment

•
• Recent and current oscillation experiments

– Reactor-based, accelerator-based
– How everything fits together… 

• Future experiments
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A brief history...

• First postulated in 1930’s (Pauli)

“I have done something very bad 
today by proposing a particle that 
cannot be detected; it is something 
no theorist should ever do…” 

A “desperate remedy” to save 
conservation of energy in 
radioactive beta decay!
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Pauli’s letter in 1930



A brief history...

• First postulated in 1930’s (Pauli)

• First detected in 1950’s (Reines & 
Cowan)
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Clyde Cowan conducting the neutrino 
experiment circa 1956



Neutrinos in the Standard Model 

• Three neutrino flavors:
electron, muon, and tau neutrino

• Weakly interacting
• Only left-handed neutrinos, and 

only right-handed antineutrinos
• Do not couple to the Higgs

→ Massless!
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Neutrinos in the Standard Model 
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• Three neutrino flavors:
electron, muon, and tau neutrino

• Weakly interacting
• Only left-handed neutrinos, and 

only right-handed antineutrinos
• Do not couple to the Higgs

→ Massless!



Neutrinos c. 1998

The observation of neutrino oscillation implies that neutrinos have mass!
(The Standard Model is incomplete!)
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Neutrino oscillation

How do we detect neutrinos experimentally?

source, 
eg. π+  →  μ+

 νμ

“short 
journey”

detector

μ

νμ νμ

μ

other 
products
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Neutrino oscillation

Experimental effect of neutrino oscillations:

“long 
journey”

μ

νμ νe

e

other 
products

This change from one state to another is what we call oscillation.
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source, 
eg. π+  →  μ+

 νμ

detector



Neutrino oscillation formalism
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neutrino production

W νμ

μ

neutrino detection

W
νe

e

weak eigenstates mass eigenstates3×3 unitary mixing matrix U

Neutrinos are produced and detected 
as one of three definite weak eigenstates: νe, νμ, ντ

 
 



Neutrino oscillation formalism
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neutrino production

W

μ

neutrino detection

W

e

weak eigenstates mass eigenstates3×3 unitary mixing matrix U

Neutrinos are produced and detected 
as one of three definite weak eigenstates: νe, νμ, ντ

 
 

sums over three mass eigenstates: ν1, ν2, ν3



Neutrino oscillation formalism
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W

μ

W

e

If mi are distinct, after traveling some distance L, the νi get out of phase with each other. 
Their sum no longer corresponds to a νμ!

L

neutrino detectionneutrino production



Neutrino oscillation formalism
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W

μ

W

e

L

neutrino detectionneutrino production

Probability of να production followed by νβ detection after some distance L:



Neutrino oscillation formalism
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W

μ

W

e

L

neutrino detectionneutrino production

Probability of να production followed by νβ detection after some distance L:

“two-neutrino approximation” 



Neutrino oscillation Signatures

oscillation frequency; 
“how quickly,” as a 
function of L/E, 
neutrinos like to oscillate

oscillation amplitude; 
“how much” neutrinos 
like to oscillate
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Neutrino oscillation Signatures
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L/E

Pr
ob

ab
ili

ty

Distance/Neutrino Energy

“First oscillation maximum”: (1.27 Δm2 L/E) = π/2

L and E are 
key for 
designing 
an oscillation
experiment!

νβ

να
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Of course, there are three neutrinos, and two oscillation frequencies…

sin22θ12 ~ 0.86
sin22θ13 ~ 0.08 
sin22θ23 ~ 0.97 

electron neutrino
muon neutrino

tau neutrino

Neutrino oscillation Signatures



• Neutrino flux is primarily να, with very small νβ contamination.
• Look for excess νβ events with the “right” energy dependence.

Neutrino appearance signature:

Neutrino oscillation Signatures
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Neutrino disappearance signature:

• Neutrino flux is primarily να, with very small νβ contamination.
• Look for deficit of να events with the “right” energy dependence.

Neutrino oscillation Signatures
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• Experiments compare oscillation 
and no-oscillation predictions
to data, fitting to sin22θ and Δm2

• Allowed oscillation parameter 
space is compared to that from 
other experiments to arrive at a 
global neutrino oscillation picture…

Neutrino oscillation Signatures

[PDG2017]



Three-neutrino picture



Three-neutrino picture

The most minimal model necessary to accommodate neutrino oscillations 

AS DICTATED BY atmospheric, solar, accelerator long-baseline, and 

reactor medium- and long-baseline neutrino data.



Three-neutrino picture

The most minimal model necessary to accommodate neutrino oscillations 

AS DICTATED BY atmospheric, solar, accelerator long-baseline, and 

reactor SHORT 

and long-baseline data.

[PDG 2017]



!
Parameters which
are yet to be determined.

CP violation phase

If non-zero, could
provide clues about
matter-antimatter 
asymmetry in our
universe.

Three-neutrino picture



It took decades for this picture to arise!

• Key experiments:
– Ray Davis’ solar neutrino experiment
– Kamiokande/Super-Kamiokande atmospheric neutrino 

experiments
– SNO solar neutrino experiment

25



The “solar” and “atmospheric” neutrino 
anomalies (1960s – 1990s)
Very first measurement of solar neutrinos:
• Ray Davis’ experiment at Homestake Mine 

(1960s-1990s)

• Observation of only ~1/3 of νe rate expected from calculation of solar 
neutrino flux (by J. Bachall)

νe
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The “solar” and “atmospheric” neutrino 
anomalies (1960s – 1990s)
Very first measurement of solar neutrinos:
• Ray Davis’ experiment at Homestake Mine 
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• Observation of only ~1/3 of νe rate expected from calculation of solar 
neutrino flux (by J. Bachall)
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The “solar” and “atmospheric” neutrino 
anomalies (1960s – 1990s)
Early measurements of atmospheric neutrinos:
• Kamiokande experiment at Kamioka Mine (1970s-1980s)

• Observation of deficit of atmospheric
muon neutrinos in 1988

A proton decay search
experiment, deep underground.

Atmospheric neutrinos were
predicted to be a background to
this search.



Resolution (1/2)

Follow-up measurements and resolution of atmospheric neutrino deficit:
Super-Kamiokande experiment at Kamioka Mine (1990s-…)

50 kton water Cherenkov detector
22.5 kton fiducial volume at 2,700 
m.w.e. underground

20+ years of running, ~50,000+ 
atmospheric neutrino events!



Resolution (1/2)

Follow-up measurements and resolution of atmospheric neutrino deficit:
Super-Kamiokande experiment at Kamioka Mine (1990s-…)



Resolution (2/2)

Follow-up measurements and resolution of solar neutrino deficit:
SNO experiment in Sudbury, Canada, 2001

Past radiochemical experiments sensitive to only ne.
SNO: sensitive to νe, νμ, ντ through neutral-current (NC) interactions, 
and to νe through charged-current (CC) interactions

φCC  |Ue2|
2  1

~ ~
φNC Σ|Uα2|

2   3
α
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What has happened since then?

Experiments have been ongoing since to determine all oscillation 
parameters and overconstrain the three-neutrino picture/look for 
new physics in the neutrino sector!
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“Atmospheric”    “Reactor” medium-baseline  “Solar”
   θ23 ~ 45 deg       θ13 ~ 10 deg     θ12 ~ 35 deg

        “access” to δCP

cij = cos θij
sij = sin θij

Three-neutrino oscillation picture
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Corroborated evidence of oscillations parametrized by the 
3 independent θij and 2 independent Δm2 splittings has been provided 
from multiple other experiments measuring not only solar and 
atmospheric, but also reactor, and accelerator-produced neutrinos:

“Solar” sector:
Gallex/GNO, SAGE, KamLAND, Super-K, Borexino, …

“Atmospheric” sector:
MINOS, K2K, IceCube, T2K, NOvA, …

“Reactor” medium-baseline sector:
Double-Chooz, Daya Bay, RENO, …

Three-neutrino oscillation picture
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“Solar” sector oscillations

KamLAND reactor-based neutrino 
experiment confirmed oscillation 
nature of solar neutrino deficit

Multiple reactor (L)
experiment in 
Japan:



“Atmospheric” sector oscillations

MINOS accelerator-based neutrino 
experiment independently 
confirmed Super-K results
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“Reactor” medium-baseline sector

Daya Bay is a medium-baseline 
reactor-based experiment with 
highest sensitivity to θ13

Daya Bay employs 8 identical 
detectors at one of the most 
powerful reactor power complexes 
in the world.
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New-generation of accelerator-based 
experiments: T2K and NOvA
• Experiments at long baselines (100’s of km), utilizing high-intensity, 

almost pure νμ beams from accelerators (E ~1 GeV)
• Sensitive to νμ disappearance at “atmospheric” Δm2 
• Sensitive to νμ→ νe appearance due to all Δm2, including 

interference terms:

Provides sensitivity to the CP-violating phase of the neutrino mixing matrix!
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T2K and NOvA: currently running
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T2K and NOvA
• Both experiments have performed:

– νμ disappearance searches
– νe appearance searches with sensitivity to δCP and mass hierarchy

• Three-neutrino picture nearly over-constrained!

Neutrino detection in NOvANeutrino detection in T2K
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?

Almost everything fits together!
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Global 3-ν picture



?

Almost everything fits together!
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??



Observed excess of νe
described by oscillation probability:
P(νμ→ νe) = (0.264 ± 0.067 ± 0.045) % 

(3.8σ evidence)

?

μ+ decay-at-rest experiment:

scintillator 
detector
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LSND puzzle piece



Points to large Δm2

if interpreted as 
two-neutrino oscillations:
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LSND puzzle piece

Much larger Δm2 cannot be reconciled in 
3-neutrino model!

Also implies oscillations at short-baselines…
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MiniBooNE puzzle piece

?

?
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Similar L/E as LSND

but

Different energy, beam
and detector systematics

Different event signatures 
and backgrounds (Cherenkov 

detector)



MiniBooNE puzzle piece
[2018 results]

Neutrino combined (12.84E20 POT) Neutrino + antineutrino combined 

Neutrino and antineutrino fits are consistent with LSND allowed regions
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… … … … … ……

(and more CP-violating phases…)
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Q: Why only 3x3 ?

Neutrino physics: The bigger picture?



Additional neutrino “flavor” states which do not experience weak interactions 
(through the standard model W/Z bosons)

The additional mass states associated with them are assumed to be produced 
through mixing with the standard model neutrinos

→ Can affect neutrino oscillations 
through mixing

…

Δm2
32

Δm2
21

Additional, (mostly) sterile neutrinos



Δm2
32

Δm2
21

Simplest (3+1) sterile neutrino model



Δm2
32

Δm2
21

|U
e4|

2

ν
e
 disappearance:

Large Δm2 implies oscillations manifest at baselines much shorter than those between 
three known neutrinos. Can approximate m1~m2~m3 ~0.

Simplest (3+1) sterile neutrino model



Δm2
32

Δm2
21

ν
e
 disappearance:

Large Δm2 implies oscillations manifest at baselines much shorter than those between 
three known neutrinos. Can approximate m1~m2~m3 ~0.

|Uμ4|
2

νμ disappearance:

Simplest (3+1) sterile neutrino model



Δm2
32

Δm2
21

ν
e
 disappearance:

Large Δm2 implies oscillations manifest at baselines much shorter than those between 
three known neutrinos. Can approximate m1~m2~m3 ~0.

νμ disappearance:

|Uμ4|
2

|U
e4|

2

νμ→ νe appearance:

Note:

Simplest (3+1) sterile neutrino model



[A. Diaz et al., ICHEP 2018]When combined with all 
available experimental 
constraints, MiniBooNE and 
LSND seem to indicate a 
preference for a (3+1) signal

PRELIMINARY

BUT, results are still inconclusive, due to tension with νμ disappearance
searches at short baselines (sin22θμe ~ ¼ sin22θee sin22θμμ implies 
non-zero νμ disappearance, but none has been seen!)

Global picture of sterile neutrinos
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What comes next?
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BNB 
55

ICARUS
600m

476 tons

MicroBooNE
470m

89 tons

SBND
110m

112 tons

Using Liquid Argon Time Projection Chamber 
(LArTPC) detectors: provide high-resolution 2D→3D 

imaging of charged particles produced in neutrino
interactions in liquid argon.

ν 

SBN: Upcoming search for sterile neutrinos
(Short Baseline Neutrino program in the US)
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Mid detector
(L< E/2Δm2)

The goal is to minimize uncertainties!

● Neutrino production modeling
● Neutrino interaction modeling
● Detector modeling

Multi-baseline search:
Determination of un-oscillated event rate at L~0 handles systematics in a less model-dependent way

 

Neutrino 
production

Near 
detector

(L~0)

Far detector
(L~E/Δm2)

L

SBN: Upcoming search for sterile neutrinos
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The goal is to minimize uncertainties!

● Neutrino production modeling
● Neutrino interaction modeling
● Detector modeling

Multi-channel search:
In any given detector (L), appearance and disappearance signals are correlated!
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SBN: Upcoming search for sterile neutrinos

|U
e4|

2
ν
e
 disappearance:νμ disappearance:

Event fraction 
    ~O(|Ue4|

2)
Event fraction 
   ~O(|Uμ4|

2)
Δm2

32

Δm2
21

νμ→ νe appearance:
Fraction (of flux)
    ~O(|Ue4|

2|Uμ4|
2)

sin22θμe ~ ¼ sin22θee sin22θμμ



What would SBN see?
Near detector: ~no oscillation

Mid detector: some oscillation

Far detector: ~max oscillation



DUNE aims to complete the three-neutrino picture: 
Discover CP violation + neutrino mass hierarchy

1300 km

P(νμ → νe) = P(νμ → νe)

sin δ = 0

_ _?

?

DUNE: Deep Underground Neutrino Experiment
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CP violation

• Three discrete symmetries:
– C: charge conjugation particle ←→ antiparticle
– P: parity inversion (x,y,z) ←→ (-x,-y,-z)
– T: time reversal t ←→ -t

• Discovery of P violation in weak interactions in 1957 by C. S. Wu, et al.
• CP violation in weak interactions found in 1964 by Christenson, et al.

– Existence of CP violation in kaon decays required the existence of 
a 3rd quark generation before experimental observation of top 
and bottom quark
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CP: left-handed neutrino to right-handed antineutrino

CP violation in neutrinos

• Parity: left-handed to 
right-handed

• Charge conjugation: 
neutrino to antineutrino

CP (νμ → νe) = νμ → νe

_ _
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1300 km

Why is δ so special?
It offers a connection

to the matter-antimatter asymmetry in our universe (Leptogenesis)

Underlying model of neutrino mass predicts “heavy neutrino partners”

CP violating decays 
of heavy neutrinos in

the early universe

lepton-antilepton 
asymmetry

in early universe
baryon-antibaryon 

asymmetry

DUNE: Future search for CP violation
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Summary
Nature’s tiniest fundamental particles--neutrinos--have been a source of mystery for 
nearly 100 years!

While we’ve come a long way, through decades of experimentation, there are still 
questions to answer and puzzles to solve.

An army of neutrino physicists (that you can join!) and cutting-edge detectors are 
working to provide some of the biggest discoveries to come over the next decades!

63



Summary
Nature’s tiniest fundamental particles--neutrinos--have been a source of mystery for 
nearly 100 years!

While we’ve come a long way, through decades of experimentation, there are still 
questions to answer and puzzles to solve.

An army of neutrino physicists (that you can join!) and cutting-edge detectors are 
working to provide some of the biggest discoveries to come over the next decades!

In the ~hour that it took you to listen to this talk  
1020 = 100,000,000,000,000,000,000 
neutrinos zipped thru your body!
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