A Brief History of Chemistry in the Cosmos

> Daniel Wolf Savin Columbia University



# Outline

Let there be light  $H^- + H \rightarrow H_2 + e^-$ Motivation D1 Experiment Results

Let there be life  $C + H_3^+ \rightarrow COMs$ Motivation D3 Experiment Results ם בְּרֵאשִׁית בָּרָא אֵלהֵים אֵת הַשְׁמָיִם וְאֵת הָאָרָץ: וְהָאָׂרָץ הֵיְתָה אֵ תֹהוֹ וָבֹהוּ וְחָשֶׁךְ עַל־פְּגֵי תְהָוֹם וְרַוּחַ אֱלהִים מְרַחֶפֶת עַל־פְּגֵי הַמֵּיִם:

<sup>3</sup> <u>ווּאמֶר אֱלהֶים יְהֵי</u> אֶוֹר ווְהִי־אָוֹר ווַיָּרָא אֲלהָים אֶת־הָאוֹר פִּי־מֵוֹב וַיַּרְהֵל אֱלהִים בִּין הָאוֹר וּבֵון הַחְשֶׁך: וַיְקָרָא אֱלהַים אָת־הָאוֹר יוֹם וְלַחָשֶׁך כָּרָא לֵיְלָה וֵיְהִי־עֶרֶב ווֵהִי־בָּקֶר ווֹם אֶחָר

זַיָּאֶמֶר אֲלֹהִים יְהֵי רָקִיעַ בְּתֵוּךְ הַמֵּיִם וִיהֵי מַבְהִיל בֵּין מָיִם 6 לְמָיִם: וַיַעַש אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בֵּין הַמָּיִם אֲשֶׁר מִתַּחַת 7 לְרָקִיעַ וּבֵין הַמַּיִם אֲשֶׁר מַעַל לְרָקֵיעַ ווֵיִהִיבֵן: וַיִּקְרָא אֵלהִים 8 לְרָקִיעַ שָׁמֵים וֵיְהִי־עֶרֶב ווֵהִי־בָקָר יוֹם שֵׁנִי:

| 9  | וַיָּאמֶר אֶלהִים יִקְוּוּ הַמֵּיִם מִתַּחַת הַשְׁמִים אֶל־מְקוֹם אֶחָר וְתָרָאֶה     |
|----|---------------------------------------------------------------------------------------|
| 10 | היבשה ויהייכו: ויהרא אלהים וליבשה ארץ ולמקוה המים                                     |
| 11 | קָרָא יַמֶּים וַיָּרָא אֶלהָים כִּי־מִוֹב: וַיָּאמֶר אֶלהִים תַּרְשָׁא הָאָרָץ        |
|    | דָּשָׁא עַשָּב מַוְרִיעַ זָּרַע עֵיץ פִּרִי עַשָּה פִּרִי לְמִינוֹ אֲשֶׁר וַרְעוּ־בָו |
| 12 | עליקאָרָץ ווְהִי־בֵן: וַתּוֹצָא הָאָרָץ דֶּשָּׁא עֵשָׁב מַזְרָיע וָרַע לְמִינָׁהוּ    |
|    | וְעַאַ עְשֶׁה־פְּרֵי אֲשֶׁר וַרְעוֹ־בָוֹ לְמִיגָהוּ וַיַּרָא אֱלהָים כִּי־מִוֹב:      |
| 13 | וידויערב וידי-לרר יום שלישי                                                           |

# Science is answering questions that humanity has pondered for millennia.



# Outline

Let there be light  $H^- + H \rightarrow H_2 + e^-$ Motivation D1 Experiment Results

Let there be life  $C + H_3^+ \rightarrow COMs$ Motivation D3 Experiment Results ם בְּרֵאשִׁית בָּרָא אֵלהָים אֵת הַשְׁמָיִם וְאֵת הָאָרָץ: וְהָאָׁרָץ הֵיְתָה אֵ תֹהוֹ וָבֹהוּ וְהָשֶׁךְ עַל־פְּגֵי תְהָוֹם וְרַוּהַ אֵלהִים מְרַחֶפָת עַל־פְּגֵי הַמֵּיִם:

<sup>6</sup> וַיָּאֶמֶר אֲלֹהִים יְהֵי רָקִיעַ בְּתֵוֹךְ הַמֵּיִם וִיהֵי מַבְהִיל בֵּין מֻיִם <sup>6</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בֵּיָן הַמֵּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בְּיָן הַמָּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְרָקִיעַ וּבֵין הַמַּיִם אֲשֶׁר מַעַל לְרָקִיעַ וַיִרִיבֵן: וַיִּקְרָבָא אֲלֹהִים <sup>8</sup>
לְרָקִיעַ שְׁמֵים וַיְהִי־עֶרֶב ווֵהִי־בָקָר יוֹם שֵׁנִי:

| וַיָּאמֶר אָלהום יָקָוּוּ הַמֵּיִם מתַּחַת הַשָּׁמִים אֶל־מָקום אָחָר וִתָרָאָה 9     |
|---------------------------------------------------------------------------------------|
| היבשה ויהי-כז: ויהרא אלהים וליבשה ארץ ולמקוה המים 10                                  |
| קרא יַמֶּים וַיַרָא אֶלהָים כִּי־מִוֹב: וַיָּאמֶר אֱלהִים תַּרְשָׁא הָאָרָץ 11        |
| דּשָׁא עַשָּב מַזְרֵיעַ זָּרַע עַיָץ פִּרִי עַשָּה פָּרִי לְמִינוֹ אָשָׁר וַרְעוּ־בָו |
| על־הָאָרָץ ווְהִי־כֵן: וַתּוֹצָא הָאָרָץ דֶּשָׁא עֵשֶׁב מַזְרָיעַ וָּרֵע לְמִינֶׁדוּ  |
| ועא עשה־פּרָי אַשֶׁר וַרְעוֹ־בָוֹ לְמִיגָהוּ וַיַרָא אֵלהָים בּי־מִוֹב:               |
| ויהי־ערב ויהי־בקר יום שלישי                                                           |

#### Structure formation in the early universe



#### How H<sub>2</sub> radiatively cools the gas down to temperature of T ~ 200 K



H<sub>2</sub> Formation during Epoch of Protogalaxy and First Star Formation

**Associative detachment (AD)** 

#### $H^{-} + H \rightarrow H_{2} + e^{-}$

This was not well understood before we started.

#### Published kinetics for $H^- + H \rightarrow H_2 + e^-$



There is nearly an order of magnitude spread. This has significant cosmological implications!

#### **First Star Formation**

Upper limit for stellar mass set by balance of outward pressure and inward gravitational force.

This hydrostatic equilibrium limit is commonly called the Jeans mass:

$$M_{\rm J} \propto \frac{T^{3/2}}{\sqrt{n}}$$

Uncertainties in  $M_J$  translate into uncertainties in predicted elemental yield from nucleosynthesis.

# **Implications for First Star Formation**

- Initially ionized gas
- 3D simulation.
- Curves is for limits of  $H^- + H \rightarrow H_2 + e^$ rate coefficient.
- $M_{\rm J} \propto T^{3/2} n^{-1/2}$
- *M*<sub>J</sub> uncertain by factor of 20.



(Kreckel et al. 2010, Science, 329, 69)

# Outline

Let there be light  $H^- + H \rightarrow H_2 + e^-$ Motivation D1 Experiment Results

Let there be life  $C + H_3^+ \rightarrow COMs$ Motivation D3 Experiment Results ם בְּרֵאשִׁית בָּרָא אֵלהָים אֵת הַשְׁמָיִם וְאֵת הָאָרָץ: וְהָאָׁרָץ הֵיְתָה אֵ תֹהוֹ וָבֹהוּ וְהָשֶׁךְ עַל־פְּגֵי תְהָוֹם וְרַוּהַ אֵלהִים מְרַחֶפָת עַל־פְּגֵי הַמֵּיִם:

<sup>3</sup> <u>ווּאַמֶר אֱלֹהֶים יְהֵי</u> אֶוֹר ווְהִי־אָוֹר ווַיִרָא אֲלֹהָים אֶת־הָאוֹר קי־מֵוֹב וַיַּרְהֵל אֱלֹהִים בָּין הָאוֹר וּבֵון הַחְשֶׁך: וַיְקָרָא אֱלֹהַים וּלָאוֹר יוֹם וְלַחָשֶׁך כָּרָא לֵיְלָה וֵוְהִי־עֶרֶב ווֵהִי־בָּקֶר ווֹם אֶחָר

<sup>6</sup> וַיָּאֶמֶר אֲלֹהִים יְהֵי רָקִיעַ בְּתֵוֹךְ הַמֵּיִם וִיהֵי מַבְהִיל בֵּין מֻיִם <sup>6</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בֵּיָן הַמֵּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בְּיָן הַמָּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְרָקִיעַ וּבֵין הַמַּיִם אֲשֶׁר מַעַל לְרָקִיעַ וַיִרִיבֵן: וַיִּקְרָבָא אֲלֹהִים <sup>8</sup>
לְרָקִיעַ שְׁמֵים וַיְהִי־עֶרֶב ווֵהִי־בָקָר יוֹם שֵׁנִי:

| הַשְׁמִיִם אָל־מָכַוֹם אָחָד וִתָרָאָה 9       | וַיָּאמֶר אֶלהום יָקָוּוּ הַמַּיִם מִתַּחַת |
|------------------------------------------------|---------------------------------------------|
| ון ליבשה ארץ ולמקוה המים 10                    | היבשה ויהי־כז: ויהרא אלהים                  |
| ניאמר אָלהים תַּדְשָׁא הָאָנָץ 11              | כָרָא יַמֶּים וַיָּרָא אֶלֹדָים כִּי־טִיב:  |
| עַשָּׁה פָּרִי` לְמִינוֹ אֲשָׁרַ וַרְעוֹ־בָו   | דָּשָׁא עַשָּב מַזְרֵיעַ זְרַע עַיָץ פּרִי  |
| ן אָשָׁא אַשֶׁב מַזְרֵיעַ וָרַע לְמִינֶׁדוּ 12 | על־הָאָרָץ ווֵהִי־כֵן: וַתּוֹצָא הָאָרָץ    |
| <u>קמינהו ויָרָא א</u> ָלהָים בּי־מּוֹב:       | ועא עשה־פּרָי אַשֶׁר זַרְעוֹ־בָוֹ           |
| 13                                             | ויהי־ערב ויהי־במר יום שלישי                 |

## The apparatus the day after first signal





#### How much did this cost?



# How much did this cost?



#### **The Team Members**



K. A. Miller, H. Bruhns, DWS, X. Urbain, H. Kreckel

# Outline

Let there be light  $H^- + H \rightarrow H_2 + e^-$ Motivation D1 Experiment Results

Let there be life  $C + H_3^+ \rightarrow COMs$ Motivation D3 Experiment Results ם בְּרֵאשִׁית בָּרָא אֵלהֶים אֵת הַשְׁמָיִם וְאֵת הָאָרָשְ: וְהָאָׁרָשְ הֵיְתָה אֵ תֹהוֹ וָבֹהוּ וְחָשֶׁךְ עַל־פְּגֵי תְהָוֹם וְרַוּהַ אֱלהִים מְרַחֶפֶת עַל־פְּגֵי הַמֵּיִם:

<sup>6</sup> וַיָּאֶמֶר אֲלֹהִים יְהֵי רָקִיעַ בְּתֵוֹךְ הַמֵּיִם וִיהֵי מַבְהִיל בֵּין מֻיִם <sup>6</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בֵּיָן הַמֵּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בְּיָן הַמָּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְרָקִיעַ וּבֵין הַמַּיִם אֲשֶׁר מַעַל לְרָקִיעַ וַיִרִיבֵן: וַיִּקְרָבָא אֲלֹהִים <sup>8</sup>
לְרָקִיעַ שְׁמֵים וַיְהִי־עֶרֶב ווֵהִי־בָקָר יוֹם שֵׁנִי:

| הַשְּׁמִיִם אָל־מָכָוֹם אָחָד וְתָרָאָה 9      | וַיָּאמֶר אֶלהום יָקָוּוּ הַמַּיִם מִתַּחַת ו |
|------------------------------------------------|-----------------------------------------------|
| ון ליבשה ארץ ולמקוה המים 10                    | היבשה ויהי־כז: ויקרא אלהים                    |
| ניאמר אָלהים תַּדְשֵׁא הָאָׂרָץ 11             | כָרָא יַמֶּים וַיָּרָא אֶלדָים כִּי־מִוֹב:    |
| עַשָּׁה פְּרִי` לְמִינוֹ אֲשָׁרַ וַרְעוֹ־בָו   | דָּשָׁא עַשָּב מַזְרַיע זָרַע עַיָן פּרִי     |
| <sup>12</sup> געשב מוריע גרע למיגרו            | עַל־הָאָָרָץ ווֵהִי־כֵן: וַתּוֹצָא הָאָרָץ    |
| לְמִיגָהוּ וַיָּרָא אֶלהָים בּּי־מָו <b>ב:</b> | ועא עשה־פּרָי אַשֶׁר זַרְעוֹ־בָוֹ             |
| 13                                             | ויהי־ערב ויהי־במר יום שלישי                   |

#### Kinetics data for $H^- + H \rightarrow H_2 + e^-$



#### **Adding in our results**



#### Theory and experiment have finally converged.

# **Implications for First Star Formation**

- Initially ionized gas
- 3D simulation.
- Red & black due to previous AD uncert.
- Other points show new ±25% uncert.
- *M*<sub>J</sub> uncertainty goes from 20 to 2!



(Kreckel et al. 2010, Science, 329, 69)

## **Questions on First Half of Talk?**

# Outline

Let there be light  $H^- + H \rightarrow H_2 + e^-$ Motivation D1 Experiment Results

Let there be life  $C + H_3^+ \rightarrow COMs$ Motivation D3 Experiment Results ם בְּרֵאשִׁית בָּרָא אֵלהֻים אֵת הַשְׁמָיִם וְאֵת הָאָרָץ: וְהָאָׁרָץ הֵיְתָה אֵ תֹהוֹ וָבֹהוּ וְהָשֶׁךְ עַל־פְּגֵי תְהָוֹם וְרַוּהַ אֵלהִים מְרַחֶפֶת עַל־פְּגֵי הַמֵּיִם:

<sup>3</sup> <u>ווּאַמֶר אֱלֹהֶים יְהֵי</u> אֶוֹר ווְהִי־אָוֹר ווַיִרָא אֲלֹהָים אֶת־הָאוֹר קי־מֵוֹב וַיַּרְהֵל אֱלֹהִים בָּין הָאוֹר וּבֵון הַחְשֶׁך: וַיְקָרָא אֱלֹהַים וּלָאוֹר יוֹם וְלַחָשֶׁך כָּרָא לֵיְלָה וֵוְהִי־עֶרֶב ווֵהִי־בָּקֶר ווֹם אֶחָר

<sup>6</sup> וַיָּאֶמֶר אֲלֹהִים יְהֵי רָקִיעַ בְּתֵוֹךְ הַמֵּיִם וִיהֵי מַבְהִיל בֵּין מֻיִם <sup>6</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בֵּיָן הַמֵּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְמָיִם: וַיַּעֲשׁ אֲלֹהִים אֶת־הָרָקִיעַ וַיִבְהֵל בְּיָן הַמָּיִם אָשֶׁר מִתַּחַת <sup>7</sup>
לְרָקִיעַ וּבֵין הַמַּיִם אֲשֶׁר מַעַל לְרָקִיעַ וַיִרִיבֵן: וַיִּקְרָבָא אֲלֹהִים <sup>8</sup>
לְרָקִיעַ שְׁמֵים וַיְהִי־עֶרֶב ווֵהִי־בָקָר יוֹם שֵׁנִי:

| הַשְׁמִים אָל־מָקום אָחָד ותָרָאָה 9                      | וַיָּאמֶר אֶלהום יָקָוּוּ הַמַּיִם מִתַּחַת ו |
|-----------------------------------------------------------|-----------------------------------------------|
| ון ליבשה ארץ ולמקוה המים 10                               | היבשה ויהי־כז: ויקרא אלהים                    |
| ניאמר אָלהים תַּדְשָׁא הָאָנָץ 11                         | כָרָא יַמֶּים וַיָּרָא אֶלֹדָים כִּי־מִוֹב:   |
| עַשָּׁה פְּרִי` לְמִינוֹ אֲשָׁרַ וַרְעוֹ־בָו              | דָּשָׁא עַשָּב מַזְרַיע זָרַע עַיָן פּרִי     |
| <sup>12</sup> אַשָּׁא אַשָּׁב מַזְרֵיעַ וָרַע לְמִינֶׁדוּ | עַל־הָאָָרָץ ווֵהִי־כֵן: וַתּוֹצָא הָאָרָץ    |
| לְמִיגָהוּ וַיָּרָא אֶלהָים בּּי־מָו <b>ב:</b>            | ועא עשה־פּרָי אַשֶׁר זַרְעוֹ־בָוֹ             |
| 13                                                        | ויהי־ערב ויהי־במר יום שלישי                   |

#### Pathway from atoms in space to life on Earth is full of unknowns



How far did interstellar chemistry take us on this pathway towards life?

# The interstellar medium exhibits a rich chemistry

- 200+ molecules have been found.
- 3/4<sup>ths</sup> contain carbon (C).
- Interstellar chemistry is organic in nature.
- There's water there too.

| Species                      | Mass | Species                      | Mass | Species                     | Mass | Species                                   | Mass |
|------------------------------|------|------------------------------|------|-----------------------------|------|-------------------------------------------|------|
| H <sub>2</sub>               | 2    | NO                           | 30   | HOCO <sup>+</sup>           | 45   | $\rm CH_3 \rm CONH_2$                     | 59   |
| $H_3^+$                      | 3    | $\mathrm{CF}^+$              | 31   | $\rm NH_2CHO$               | 45   | HNCS                                      | 59   |
| CH                           | 13   | $\mathrm{CH}_3\mathrm{NH}_2$ | 31   | PN                          | 45   | $C_5$                                     | 60   |
| $\mathrm{CH}^+$              | 13   | $\rm H_3CO^+$                | 31   | AlF                         | 46   | CH <sub>2</sub> OHCHO                     | 60   |
| $CH_2$                       | 14   | HNO                          | 31   | $C_2H_5OH$                  | 46   | CH <sub>3</sub> COOH                      | 60   |
| $CH_3$                       | 15   | $\mathrm{CH}_3\mathrm{OH}$   | 32   | $\rm CH_3OCH_3$             | 46   | HCOOCH <sub>3</sub>                       | 60   |
| NH                           | 15   | $\mathrm{SiH}_4$             | 32   | $H_2CS$                     | 46   | OCS                                       | 60   |
| $\mathrm{CH}_4$              | 16   | HS                           | 33   | HCOOH                       | 46   | SiS                                       | 60   |
| $\rm NH_2$                   | 16   | $\mathrm{HS^{+}}$            | 33   | NS                          | 46   | $C_5H$                                    | 61   |
| $\mathrm{NH}_3$              | 17   | $H_2S$                       | 34   | $\rm CH_3SH$                | 48   | AlCl                                      | 62   |
| OH                           | 17   | $H_2S^+$                     | 34   | SO                          | 48   | $\mathrm{HOCH}_2\mathrm{CH}_2\mathrm{OH}$ | 62   |
| $OH^+$                       | 17   | $C_3$                        | 36   | $SO^+$                      | 48   | $\mathrm{HC}_4\mathrm{N}$                 | 63   |
| $H_2O$                       | 18   | HCl                          | 36   | $C_4H$                      | 49   | $\mathrm{CH}_3\mathrm{C}_4\mathrm{H}$     | 64   |
| $H_2O^+$                     | 18   | $c-C_3H$                     | 37   | $C_4H^-$                    | 49   | $S_2$                                     | 64   |
| $\mathrm{NH_4}^+$            | 18   | $l-C_3H$                     | 37   | NaCN                        | 49   | $ m SiC_3$                                | 64   |
| $H_3O^+$                     | 19   | $c-C_3H_2$                   | 38   | $C_3N$                      | 50   | $SO_2$                                    | 64   |
| $_{ m HF}$                   | 20   | $H_2CCC$                     | 38   | $H_2CCCC$                   | 50   | $\rm CH_2 \rm CCHCN$                      | 65   |
| $C_2$                        | 24   | HCCN                         | 39   | HCCCCH                      | 50   | $\mathrm{CH}_3\mathrm{C}_3\mathrm{N}$     | 65   |
| $C_2H$                       | 25   | $C_2O$                       | 40   | MgCN                        | 50   | $C_3S$                                    | 68   |
| $C_2H_2$                     | 26   | $\rm CH_2 \rm CN$            | 40   | MgNC                        | 50   | FeO                                       | 72   |
| CN                           | 26   | $\mathrm{CH}_3\mathrm{CCH}$  | 40   | $\mathrm{HC}_{3}\mathrm{N}$ | 51   | $C_6H$                                    | 73   |
| $\rm CN^+$                   | 26   | SiC                          | 40   | HCCNC                       | 51   | $C_6H^-$                                  | 73   |
| HCN                          | 27   | CH <sub>3</sub> CN           | 41   | HNCCC                       | 51   | $C_5N$                                    | 74   |
| HNC                          | 27   | CH <sub>3</sub> NC           | 41   | $c-SiC_2$                   | 52   | $C_6H_2$                                  | 74   |
| $C_2H_4$                     | 28   | $H_2CCO$                     | 42   | $C_3O$                      | 52   | HCCCCCCH                                  | 74   |
| CO                           | 28   | $\rm NH_2CN$                 | 42   | $\rm H_2C_3N^+$             | 52   | $\mathrm{HC}_{5}\mathrm{N}$               | 75   |
| $\rm CO^+$                   | 28   | SiN                          | 42   | AlNC                        | 53   | KCl                                       | 75   |
| $H_2CN$                      | 28   | CP                           | 43   | $\rm CH_2 CHCN$             | 53   | $\rm NH_2CH_2COOH$                        | 75   |
| $\mathrm{HCNH^{+}}$          | 28   | HNCO                         | 43   | $c-H_2C_3O$                 | 54   | $\mathrm{SiC}_4$                          | 76   |
| $N_2^+$                      | 28   | HNCO-                        | 43   | HC <sub>2</sub> CHO         | 54   | $C_6H_6$                                  | 78   |
| $\mathrm{CH}_2\mathrm{NH}$   | 29   | $c-C_2H_4O$                  | 44   | SiCN                        | 54   | $C_7H$                                    | 85   |
| HCO                          | 29   | $\rm CH_3 CHO$               | 44   | SiNC                        | 54   | $\rm CH_3C_6H$                            | 88   |
| HCO <sup>+</sup>             | 29   | $\rm CO_2$                   | 44   | $\rm CH_3 CH_2 CN$          | 55   | $C_8H$                                    | 97   |
| $HN_2^+$                     | 29   | $\rm CO_2^+$                 | 44   | $C_2S$                      | 56   | $C_8H^-$                                  | 97   |
| $HOC^+$                      | 29   | CS                           | 44   | $C_3H_4O$                   | 56   | HC <sub>7</sub> N                         | 99   |
| SiH                          | 29   | $N_2O$                       | 44   | $\rm CH_3 CH_2 CHO$         | 58   | $\mathrm{HC}_{9}\mathrm{N}$               | 123  |
| $\mathrm{CH}_3\mathrm{CH}_3$ | 30   | SiO                          | 44   | $\rm CH_3 COCH_3$           | 58   | HC <sub>11</sub> N                        | 147  |
| $\rm H_2CO$                  | 30   | $\mathrm{HCS}^+$             | 45   | NaCl                        | 58   |                                           |      |
|                              |      |                              |      |                             |      |                                           |      |

Source: astrochemistry.net

Some gas-phase pathways for forming the chemicals needed for life Conditions in dense molecular clouds:  $n \sim 10^4$  cm<sup>-3</sup>  $T_{gas} \sim 10$  K



# Published kinetics of C + $H_3^+ \rightarrow CH^+ + H_2$



QM calc's beyond current theoretical abilities. No lab data exist at molecular cloud temperatures. Over factor of 2 uncertainty in the rate coefficient.

# Outline

Let there be light  $H^- + H \rightarrow H_2 + e^-$ Motivation D1 Experiment Results

#### Let there be life

 $\begin{array}{c} {\sf C} + {\sf H}_3^+ \to {\sf COMs} \\ & {\sf Motivation} \\ {\sf D3 \ {\sf Experiment}} \\ & {\sf Results} \end{array}$ 

ם בְּרֵאשִׁית בָּרָא אֵלהָים אֵת הַשְׁמָיִם וְאֵת הָאָרָץ: וְהָאָרָץ הֵיְתָה אֵ תֹהוֹ וָבֹהוּ וְהָשֶׁךְ עַל־פְּגֵי תְהָוֹם וְרַוּהַ אֵלהִים מְרַחֶפֶת עַל־פְּגֵי הַמֵּיִם:

<sup>3</sup> <u>ווּאמֶר אֱלהֶים יְהֵי</u> אֶוֹר ווְהִי־אָוֹר ווַיָרָא אֲלהָים אֶת־הָאוֹר קי־מֵוֹב וַיַּרְהֵל אֱלהִים בּין הָאוֹר וּבון הַחְשֶׁך: וַיְקָרָא אֱלהַים וּלָאוֹר יוֹם וְלַחָשֶׁך כָּרָא לֵיְלָה וֵיְהִי־עֶרָב ווְהִי־בָּקָר יָוֹם אֶחָר

זַיָּאמֶר אָלֹהִים יְהִי רָקִיעַ בְּתַוּךְ הַמֵּיִם וִיהֵי מַבְהִיל בֵּין מָיִם <sup>6</sup> לְמָיִם: וַיַעַש אָלהִים אָת־הָרָקִיעַ וַיִבְהֵל בֵּין הַמָּיִם אֲשֶׁר מִתַּחַת 7 לְרָקִיעַ וּבֵין הַמִּיִם אֲשֶׁר מַעַל לְרָכֵיעַ וַיִהִי־בֵן: וַיִּקְרָא אָלהִים 8 לְרָקִיעַ שָׁמֵים וַיְהִי־עֶרֶב וַיְהִי־כָּכֶר יָוֹם שֵׁנִי:

| 9  | וַיָּאמֶר אֶלהִים יִקְוּוּ הַמֵּיִם מִתַּחַת הַשְׁמִים אֶל־מְקוֹם אֶחֶׁר וְתָרָאֶה                 |
|----|----------------------------------------------------------------------------------------------------|
| 10 | היבשה ויהי-כו: ויהרא אלהים וליבשה ארץ ולמקוה המים                                                  |
| 11 | קָרָא יַמֶּים וַיָרָא אֶלהָים כּּי־טִוֹב: וַיָּאמֶר אֶלהִים תַּרְשָׁא הָאָׂרָץ                     |
|    | דָּשָׁא עַשָּב מַזְרַיע זָרַע עָץ פִּרִי עַשָּה פִּרִי לְמִינו אֲשָׁר וַרְעוּ־בָו                  |
| 12 | על־הָאָרָץ ווְהִי־בֵן: וַתּוֹצָא הָאָרָץ דֶּשָׁא עֵשָׁב מַוְרָיע וָוָהי־בֵן: עַל־הָאָרָץ דָּשָׁא מ |
|    | וְעֵאַ עְשֶׁה־פְּרֵי אֲשֶׁר וַרְעוֹ־בָוֹ לְמִיגָהוּ וַיַּרָא אֱלהָים כּּי־מּוֹב:                   |
| 13 | ויהי־ערב ויהי־במר יום שלישי                                                                        |



C<sup>-</sup> source



# How much did this cost? A) \$1,000,000



#### How much did this cost?



#### **The Team Members**



Ken Miller, X. Urbain, DWS, Jule Stützel, A. O'Connor, Nathalie de Ruette

# Outline

Let there be light  $H^- + H \rightarrow H_2 + e^-$ Motivation D1 Experiment Results

#### Let there be life

C + H<sub>3</sub><sup>+</sup> → COMs Motivation D3 Experiment Results ם בְּרֵאשִׁית בָּרָא אֵלהֻים אֵת הַשְׁמָיִם וְאֵת הָאָרָץ: וְהָאָׁרָץ הֵיְתָה אֵ תֹהוֹ וָבֹהוּ וְחָשֶׁךְ עַל־פְּגֵי תְהֵוֹם וְרַוּחַ אֵלהִים מְרַחֶפָת עַל־פְּגֵי הַמֵּיִם:

<sup>3</sup> <u>ווּאמֶר אֱלהֶים יְהֵי</u> אֶוֹר ווְהִי־אָוֹר ווַיָּרָא אֲלהָים אֶת־הָאוֹר פִּי־מֵוֹב וַיַּרְהֵל אֱלהִים בָּין הָאוֹר וּבֵון הַחְשֶׁך: וַיְקָרָא אֱלהַים אָת־הָאוֹר יוֹם וְלַחָשֶׁך כָּרָא לֵיְלָה וֵוְהִי־עֶרֶב ווְהִי־בָּקֶר ווֹם אֶחָר

זַיָּאמֶר אָלֹהִים יְהָי רָקִיעַ בְּתַוּךְ הַמֵּיִם וִיהָי מַבְהִיל בֵּין מָיִם 6 לְמָיִם: וַיַעַש אָלהִים אָת־הָרָקִיעַ וַיִבְהֵל בֵּין הַמָּיִם אֲשֶׁר מִתַּחַת 7 לְרָקִיעַ וּבֵין הַמִּיִם אֲשֶׁר מַעַל לְרָכֵיעַ וַיִהִי־בֵן: וַיִּקְרָא אָלהִים 8 לְרָקִיעַ שָׁמֵים וַיְהִי־עֶרֶב וַיְהִי־כָּכֶר יָוֹם שֵׁנִי:

| 9  | וַיָּאמֶר אֶלהִים יִקְוּוּ הַמֵּיִם מִתַּחַת הַשְׁמִים אֶל־מְקוֹם אֶהָר וְתָרָאֶה      |
|----|----------------------------------------------------------------------------------------|
| 10 | היבשה ויהי-כו: ויהרא אלהים וליבשה ארץ ולמהוה המים                                      |
| 11 | קָרָא יַמֶּים וַיָּרָא אֶלהָים כִּי־מִוֹב: וַיָּאמֶר אֶלהִים תַּרְשָׁא הָאָרָץ         |
|    | דָּשָׁא עַשָּב מַוְרִיעַ זֶׁרַע עֵיץ פּּרִי עַשָּׁה פּּרִי לְמִינוֹ אֲשֶׁר וַרְעוּ־בָו |
| 12 | עליהאָרָא ווְהִי־בֵן: וַתּוֹצָא הָאָרָץ דֶּשָּׁא עֵשָׁב מַזְרֵיע וָרַע לְמִינָׁהוּ     |
|    | וְעֵאָ עְשֶׁה־פְּרָי אֲשֶׁר וַרְעוֹ־בָוֹ לְמִיגָהוּ וַיָּרָא אֱלהָים כִּי־מִוֹב:       |
| 13 | ויהידערב ויהידבמר יום שלישי                                                            |

# C + H<sub>3</sub><sup>+</sup> summed thermal rate coefficients



Reduced uncertainty from factor of >2 to <20%.

## New C + H<sub>3</sub><sup>+</sup> data reduces abundance uncertainties in astrochemical models



## New C + H<sub>3</sub><sup>+</sup> data reduces abundance uncertainties in astrochemical models



#### Conclusions

- We have performed the first energy dependent measurements for the H<sup>-</sup> + H → H<sub>2</sub> + e<sup>-</sup> reaction.
- Our results will improve cosmological models for protogalaxy and first star formation.
- Have developed a new apparatus to study astrochemical reactions with atomic D, C, and O.
- We have measured C +  $H_3^+$ , O +  $H_3^+$ , as well as D +  $H_3^+/H_2^-D^+/D_2^-H^+$ .
- Results improve our understanding of the chemical evolution of the cosmos.

## Thanks for your attention.