Pulsar Wind Nebulae:

A Multiwavelength Perspective

Patrick Slane (CfA) Workshop on High Energy Galactic Physics New York, NY 2010

Collaborators:
J. D. Gelfand
T. Temim
D. Castro
S. M. LaMassa
B. M. Gaensler
J. P. Hughes
S. Park
D. J. Helfand
O. C. de Jager
A. Lemiere
S. P. Reynolds
S. Funk
Y. Uchiyama
PWNe and Their SNRs

- **Pulsar Wind**
 - sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms

- **Supernova Remnant**
 - sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN; energy distribution of particles in nebula tracks evolution; instabilities at PWN/ejecta interface may allow particle escape

Gaensler & Slane 2006

Patrick Slane (CfA) Workshop on High Energy Galactic Physics New York, NY 2010
The Surrounding Ejecta: G54.1+0.3

- G54.1+0.3 is a young PWN
 - termination shock and jet-like outflow clearly observed
The Surrounding Ejecta: G54.1+0.3

- G54.1+0.3 is a young PWN
 - termination shock and jet-like outflow clearly observed
- PWN is surrounded by a shell of IR emission
 - IRS spectroscopy shows dust continuum w/ lines from rapidly-expanding ejecta

Temim et al. 2010
The Surrounding Ejecta: G54.1+0.3

- G54.1+0.3 is a young PWN
 - termination shock and jet-like outflow clearly observed

- PWN is surrounded by a shell of IR emission
 - IRS spectroscopy shows dust continuum w/ lines from rapidly-expanding ejecta

Temim et al. 2010
The Surrounding Ejecta: G54.1+0.3

- G54.1+0.3 is a young PWN
 - termination shock and jet-like outflow clearly observed

- PWN is surrounded by a shell of IR emission
 - IRS spectroscopy shows dust continuum w/ lines from rapidly-expanding ejecta

- IR emission is from freshly-formed ejecta dust heated by stars
 - Extended IR clump has enhanced temperature and density; possibly compressed by jet

Temim et al. 2010
Broadband Emission from PWNe

• Spin-down power is injected into the PWN at a time-dependent rate

\[\dot{E} = I\Omega \dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau} \right)^{-n+1} \]

• Assume power law input spectrum:

\[Q(t) = Q_0(t)(E_e / E_b)^{-\alpha} \]

- note that studies of Crab and other PWNe suggest that there may be multiple components

• Get associated synchrotron and IC emission from electron population evolved nebula

 - joint fitting of synchrotron and IC spectra give B
• Spin-down power is injected into the PWN at a time-dependent rate

\[
\dot{E} = I \Omega \dot{\Omega} = \dot{E}_0 \left(1 + \frac{t}{\tau}\right)^{-\frac{n+1}{n-1}}
\]

- note that studies of Crab and other PWNe suggest that there may be multiple components

• Assume power law input spectrum:

\[
Q(t) = Q_0(t) \left(\frac{E_e}{E_b}\right)^{-\alpha}
\]

• Get associated synchrotron and IC emission from electron population evolved nebula

- joint fitting of synchrotron and IC spectra give \(B \)
• PIC simulations of particle acceleration in relativistic shocks show build-up of energetic particles (Spitkovsky 2008)

• Multi-component input spectrum: Maxwellian + power law
 - and possibly more complex if conditions differ at different acceleration sites
Broadband Observations of 3C 58

- 3C 58 is a bright, young PWN
 - morphology similar to radio/x-ray; suggests low magnetic field
 - PWN and torus observed in Spitzer/IRAC

- Low-frequency break suggests possible break in injection spectrum
 - IR flux for entire nebula falls within the extrapolation of the X-ray spectrum
 - indicates single break just below IR

- Torus spectrum requires change in slope between IR and X-ray bands
 - challenges assumptions for single power law for injection spectrum
• XMM spectrum shows nonthermal and ejecta-rich thermal emission from cocoon
 - reverse-shock crushed PWN and mixed in ejecta?

• Broadband measurements consistent with synchrotron and I–C emission from PL
electron spectrum w/ two breaks, or two populations
Evolution in an SNR: Vela X

- XMM large project to map cocoon and much of remaining nebula underway
HESS J1640-465

- Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3-0.0

- XMM observations (Funk et al. 2007) identify extended X-ray PWN

- Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1} \text{ erg s}^{-1} \Rightarrow \dot{E} \sim 10^{36.7} \text{ erg s}^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with $B \sim 6 \mu\text{G}$ and $t \sim 15 \text{ kyr}$
 - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright
• Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3–0.0
• XMM observations (Funk et al. 2007) identify extended X-ray PWN
• Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1}$ erg s$^{-1}$ \Rightarrow $\dot{E} \sim 10^{36.7}$ erg s$^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with $B \sim 6 \mu$G and $t \sim 15$ kyr
 - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright
- Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3–0.0

- **XMM observations** (Funk et al. 2007) identify extended X-ray PWN

- **Chandra observations** (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1}$ erg s$^{-1}$ $\Rightarrow \dot{E} \sim 10^{36.7}$ erg s$^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with $B \sim 6 \mu$G and $t \sim 15$ kyr
 - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright
HESS J1640-465

- Extended source identified in HESS GPS
 - no known pulsar associated with source
 - may be associated with SNR G338.3–0.0
- XMM observations (Funk et al. 2007) identify extended X-ray PWN
- Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1}$ erg s$^{-1}$ \Rightarrow $\dot{E} \sim 10^{36.7}$ erg s$^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with $B \sim 6$ μG and $t \sim 15$ kyr
 - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright
- Fermi LAT reveals emission associated with source

Patrick Slane (CfA) Workshop on High Energy Galactic Physics New York, NY 2010
• PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model
- PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model

HESS J1640-465

- PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model
• PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model

• Modifying low-energy electron spectrum by adding Maxwellian produces GeV emission through inverse Compton scattering
 - primary contribution is from IR from dust (similar to Vela X)
 - mean energy ($\gamma \sim 10^5$) and fraction in power law (4%) consistent with particle acceleration models
HESS J1640–465

• PWN model with evolved power law electron spectrum fits X-ray and TeV emission
 - Fermi emission falls well above model

• Modifying low-energy electron spectrum by adding Maxwellian produces GeV emission through inverse Compton scattering
 - primary contribution is from IR from dust (similar to Vela X)
 - mean energy ($\gamma \sim 10^5$) and fraction in power law ($\sim 4\%$) consistent w/ particle acceleration models

• GeV emission can also be fit w/ pion model
 - requires $n_0 > 100 \text{ cm}^{-3}$, too large for G338.3–0.3
G327.1-1.1: More (Reverse) Shocking Results

- G327.1-1.1 is a composite SNR for which radio morphology suggests PWN/RS interaction

- Chandra observations show an offset compact source w/ trail of nonthermal emission extending back to radio PWN
 - compact source is extended and embedded in bowshock-structure
 - prong-like structures extend from source, inflating bubble in region cleared out by RS

Temim et al. 2009
G327.1-1.1: More (Reverse) Shocking Results

- G327.1-1.1 is a composite SNR for which radio morphology suggests PWN/RS interaction

- Chandra observations show an offset compact source with a trail of nonthermal emission extending back to radio PWN
 - compact source is extended and embedded in bowshock-structure
 - prong-like structures extend from source, inflating bubble in region cleared out by RS

Temim et al. 2009
Probing Composite SNRs With Fermi

- G327.1-1.1 is a composite SNR for which radio morphology suggests PWN/RS interaction

- Chandra observations show an offset compact source w/ trail of nonthermal emission extending back to radio PWN
 - compact source is extended and embedded in bowshock-structure
 - prong-like structures extend from source, inflating bubble in region cleared out by RS
• G327.1-1.1 is a composite SNR for which radio morphology suggests PWN/RS interaction

• Chandra observations show an offset compact source w/trail of nonthermal emission extending back to radio PWN
 - compact source is extended and embedded in bowshock-structure
 - prong-like structures extend from source, inflating bubble in region cleared out by RS

And...
Probing Composite SNRs With Fermi

- Watch for studies of this and other such systems with Fermi
Summary

• Multiwavelength studies of PWNe reveal:
 - spin properties of central engines
 - geometry of systems
 - spatially-resolved spectra
 - interaction with supernova ejecta
 - presence of freshly-formed dust.

• These lead to constraints on:
 - particle acceleration in relativistic shocks
 - formation of jets
 - physics of pulsar magnetospheres
 - nature of progenitor stars
 - early and late-phase evolution of pulsar winds

• Current advances are being made across the electromagnetic spectrum, as well as in theoretical modeling, and point the way for investigations in virtually every wavelength band.